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Order Statistics and Ginibre’s Ensembles
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The moduli of the eigenvalues at the edge of Ginibre’s complex and quaternion
Gaussian random matrix ensembles are shown to respond to a limit theorem
identical in nature to that for independent identically distributed sequences. This
is a companion work to ref. 15 in which the limit law for the (scaled) spectral
radius of these ensembles was identified.

KEY WORDS: Random matrices; order statistics.

1. INTRODUCTION

Consider the ensembles of N × N random matrices in which all entries are
independent and distributed as 1

`N
times either a standard real, complex or

quaternion Gaussian. These are the canonical non-Hermitian ensembles of
Random Matrix Theory. They are widely referred to as Ginibre’s
ensembles, he being first to recognize their importance and, in the complex
and quaternion cases, derive their explicit spectral density functions
(ref. 10). The complex case is easiest to describe: the eigenvalues, labeled
z1, z2,..., zN and lying in the complex plane C, have distribution described
by the joint density

PC
N(z1, z2,..., zN)=

1
ZC

N

e−N C N
k=1 |zk|2

D
1 [ j < k [ N

|zj − zk |2. (1.1)

The quaternion ensemble PQ
N is absolutely continuous to PC

N; its density has
the additional factor <k |zk − z̄k |2 <j < k |zj − z̄k |2, causing the eigenvalues to
be repulsed by the real axis in addition to the usual level-repulsion present



in (1.1). The real case is more complicated still (we do not deal with it
directly here, but see comments below).

While much of the recent explosion of activity in Random Matrix
Theory has focused on Hermitian ensembles, there is a growing interest in
the non-Hermitian and almost-Hermitian settings due to their relevance to
various branches of theoretical physics (refs. 5 and 8 will direct you to the
literature). In this note we complete the picture began in ref. 15 by deter-
mining limiting distributions for the edge eigenvalues, or actually their
moduli. Define

r (N)
a =ath largest{|zk | such that zk is an eigenvalue}

(in either the complex or quaternion ensemble), noting that r (N)
1 is also the

spectral radius. In accordance with the Circular Law2 one expects that, for

2 This states that the empirical spectral distribution for all these models tends to the uniform
measure on |z| [ 1 as N ‘ ., see for example ref. 1.

any fixed a, these numbers will converge to 1 as N ‘ .. A result of this type
is found in ref. 9. We are interested in fluctuations and previously have
proved:

Theorem (ref. 15). For r (N)
1 the spectral radius of the N × N complex

Gaussian ensemble we have

lim
N ‘ .

PC
N(r (N)

1 − 1 [ `cN/4N+x/`4NcN)=e−e − x
(1.2)

in which cN=log N − (2 log log N+log 2p). For the quaternion case (the
PQ

N measure) the result is the same up to a numerical factor: the right hand
side of (1.2) is replaced by e−`2 e − x

.
The entertaining observation not pointed out in ref. 15 is that the right

hand side of (1.2) is an extremal distribution: it is of the type exhibited by
the maximum of suitably scaled independent variables. To explain, let
X1, X2,... be a sequence of independent identically distributed random
variables, and bring in for each N their Order Statistics: X (N)

N [

X (N)
N − 1 [ · · · [ X (N)

1 (X (N)
a is the ath largest of the first N observations). The

classical fact (see ref. 12) is that if there exist sequences aN and bN such that
aNX (N)

1 +bN has a non-degenerate limiting distribution, then so does
aNX (N)

a +bN (for any fixed a) and it must be the case that

lim
N ‘ .

P(aNX (N)
a +bN [ x)=H(a)(x) :=H(x) C

a − 1

k=0

1
k!
5log

1
H(x)

6k

(1.3)
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with a distribution function H(x)=H(1)(x) of one of the following three
forms:

(i) e−e − x
with support (−., .)

(ii) e−x − c

with support [0, .) and c > 0 (1.4)

(iii) e−(−x)c

with support (−., 0] and c > 0.

An illustrative example is afforded by the case in which X1, X2,... are
uniformly distributed on [0, 1]. Then, without any scaling, P(X(N)

1 [ x)
=xN on 0 [ x [ 1, =0 on x < 0, and =1 on x > 1, converges to a step
function representing the degenerate distribution, or unit mass, at the point
x=1. This type of thing is of no interest here. On the other hand, as N ‘ .

the distribution function of the scaled variable N(X(N)
1 − 1) which equals

(1+x/N)N on − N [ x [ 0 goes over into that of type (iii) with c=1.
More generally, ref. 12 contains conditions on the underlying distribution
of the input sequence {Xa} which allow (if they indeed exist) both the
limiting type ((i), (ii), or (iii)) and the appropriate scaling (aN and bN)
to be identified ahead of time.

Now, with the right hand side of (1.2) recognized as an H of type (i),
our result may be anticipated:

Theorem 1.1. For any fixed a we have that: with again cN=log N −
(2 log log N+log 2p),

lim
N ‘ .

PC
N(r (N)

a − 1 [ `cN/4N+x/`4NcN)=H(a)(x) (1.5)

where H (a) is as in (1.3) and H is of type (i) defined in (1.4). Once more the
result extends to the quaternion ensemble with the same adjustment needed
in (1.2)

Both (1.2) and Theorem 1.1 stem from the following product struc-
ture: taking the complex case and a radial test function f(z)=f(|z|),

F
C

· · · F
C

f(z1) · · · f(zN) PC
N(dz1, dz2,..., dzN)=D

N

a=1
E 5f 1= g1+ · · · +ga

N
26

(1.6)

in which {gk} form a sequence of independent exponentially distributed
random variables of mean one. That the integral on the left factors is noted
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in Mehta (13) and utilized in refs. 5 and 6 (the latter also discuses certain
edge statistics), but prior to ref. 15 we have not seen the right hand side
cast in this more probabilistic light. The advantage of this viewpoint is that
if f concentrates in a neighborhood of |z|=1, the Central Limit Theorem
immediately explains that it is only the last O(`N) terms which figure into
(1.6) for N large. This observation motivates our derivation of (1.2) and
(1.5). The physical picture is that the expected O(`N) eigenvalues outside
of the unit disk are repulsed through their angular component, allowing
their moduli to act more or less independently.

Remark 1.1. Our interest in the above line of questions derives in
part from the well-known work of Tracy–Widom on the largest eigenvalue
in G(U/O/S) E (refs. 16 and 17). The structure here is far less intricate
than for G(U/O/S) E, but this simplicity has its advantages, there being of
yet no closed expression for the second, third, etc. largest eigenvalue
distribution in those ensembles. However, see refs. 7, 18, and 19 for such
results in the Laguerre ensemble, as well as the very recent ref. 3 which
discusses this issue more generally.

Remark 1.2. That the result of Theorem 1.1 is not stated for the
real Gaussian case lies in the complexity of that eigenvalue density (see
ref. 4). We assume that this is just a technical roadblock and that the
present result extends to a large class of non-Hermitian matrices with
independent identically distributed entries. That is, the non-Hermitian edge
statistics studied here should enjoy the type of universality known to hold
in the Wigner case. (14)

Remark 1.3. Given how explicit the formulas are ((1.6) and below),
another direction is to extend the type of result discussed here down into
the bulk, computing fluctuations of r (N)

KhNL about its limit `h ¥ (0, 1).
J. L. Lebowitz has kindly pointed out that such a computation has rele-
vance to charge fluctuations in the two-dimensional one-component plasma
(Jellium) model. In fact, (11) may be consulted for work on the corresponding
Large Deviations of this problem.

2. PROOF OF THE THEOREM

Complex Ensemble. The probability that the ath eigenvalue
(ordered by absolute value) lies within the disk of a given radius a is just
the sum from k=0 to a − 1 of the probabilities that there are exactly k

1142 Rider



eigenvalues outside of that disk. The typical approach to the latter (gap
probabilities) is to expand the right hand side of

PC
N(exactly k eigenvalues in |z| > a)

=
1
k!
1 −

d
dl
2k

EC
N
5 D

k=1,..., N
(1 − lq[a, .)(|zk |))6

l=1
(2.1)

employing the determinantal structure

PC
N(z1, z2,..., zN)=

1
N!

e−N C N
k=1 |zk|2

det[KN(zk, za)]1 [ k, a [ N (2.2)

with kernel given by KN(z, w)=1
p ;N − 1

a=0
Na+1

a! zaw̄a. Here, essential use is
made of the fact that, as an operator, KN projects onto the span of the
first N polynomials orthogonal with respect to the weight mN(dz)=
e−N |z|2

dR(z) dI(z) on C. On the other hand, the present non-Hermitian
setup allows a simpler approach. Following Mehta, (13) appropriate row/
column operations in the determinant (2.2) along with the symmetries of
the EC

N integrand (2.1) yield

1
N!

F
C

· · ·F
C

D
k=1,..., N

(1−lq[a, .)(|zk|)) det[KN(zk, za)]1 [ k, a [ N mN(dz1) · · ·mN(dzN)

=1pN D
k=0,..., N−1

k!2
−1

F
C

· · ·F
C

D
k=1,..., N

(1−lq[a, .)(|zk|))

×det[z̄k−1
k za−1

k ]1 [ k, a [ N mN(dz1) · · ·mN(dzN)

=1pN D
k=0,..., N−1

k!2
−1

det 5F
C

(1−lq[a, .)(|z|)) z̄kzamN(dz)6
0 [ k, a [ N−1

= D
k=0,..., N−1

51−l F
.

a
2

rke−Nr dr
k!N−(k+1)

6.

Now taking derivatives in l as indicated in (2.1) and recognizing the pro-
babilistic content of the integral in the last line of the previous display, we
arrive at our basic formula:

PC
N(exactly k eigenvalues in |z| \ a)

=PC
N(no eigenvalues in |z| \ a)

× C
1 [ a1 < a2 < · · · < ak [ N

˛ D
m=1,..., k

P 1 1
N

C
am

i=1
gi \ a22

P 1 1
N

C
am

i=1
gi [ a22

ˇ (2.3)
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where the {gk} form a sequence of independent exponential random
variables of mean one.

It is interesting to mention the above in the context of the work of
Borodin and Soshnikov (3) on Janossy densities for general determinantal
ensembles. An instance of their result is that

PC
N(exactly k eigenvalues in |z| \ a)

=PC
N(no eigenvalues in |z| \ a)

×
1
k!

F
|z1| \ a

· · · F
|zk| \ a

det[KN, a(zi, zj)]1 [ i, j [ k mN(dz1) · · · mN(dzk) (2.4)

in which the kernel KN, a is defined similarly to KN. It is again a projection
onto the span of the first N orthogonal polynomials with respect to weight
mN(dz), though now on the restricted domain {|z| < a}. But note the
monomials {zk} remain orthogonal on any radially symmetric domain with
respect to either the present or any radially symmetric weight, and so KN, a

and KN agree up to normalizers, making everything quite explicit. A bit of
algebra will now take you from (2.4) to (2.3).

Returning to the proof, the right hand side of (2.3) is to be examined
for a=aN(x)=1+`cN/4N+x/`4NcN (recall the statement) with fixed
x and N ‘ .. That the prefactor, the probability of all eigenvalues being
of modulus less than aN(x), settles down to the correct object is the old
result (1.2) and so may be ignored. In fact, verifying (1.5) comes down to
checking that

lim
N ‘ .

C
1 [ a1 < a2 < · · · < ak [ N

3 D
m=1,..., k

P 1 1
N

C
N − am

i=1
gi \ a2

N(x)24=
1
k!

e−kx (2.5)

for whatever fixed integer k. Here the terms figuring in the denominator of
(2.3) have been left out. That this may be done at the expense of multipli-
cative errors of order 1+o(1) follows from: with x bounded and N large,

1 \ P 1 1
N

C
N − a

i=1
gi [ a2

N(x)2 \ P 1 1
N

C
N

i=1
gi [ 1+

1
2

`log N/N2

\ 1 − exp 5− N 1b 11+
`log N

2 `N
2+log(1 − b)26 \ 1 − N−1/8
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after an application of Chebychev’s Inequality and choosing b=1
2 `(log N)/N

in the last step. On the other hand, pertaining to the remaining terms we
have

P 1 1
N

C
N − a

i=1
gi \ a2

N(x)2

[ exp 5− N 1b+11 −
a

N
2 log(1 − b)26 [ exp 5−

a
2

2N
6

for b=1+(1+a/N)−1. Thus, any term in (2.5) containing an am >
2 `kN log N decays like N−2k. As there are O(Nk) terms in total, it is
allowed to reduce the sum in this manner.

Next, with the theorem being one of convergence in distribution the
scaling function aN(x) may be replaced with the more convenient approx-
imation

âN(x)=1+
1

2 `N
`cN+2x :=1+

fN(x)

2 `N
.

It is also helpful to rescale within the probabilities making up the right
hand side of (2.5) as in

P 1 1
N

C
N − a

i=1
gi \ â2(x)2=P 1 1

`N
C

N − a

i=1
(gi − 1) \ fN(x)+

a

`N
2 :=p(a, N)

where we have made yet another definition: fN(x) :=fN(x)+ 1
4 `N

f2
N(x).

The result can now be explained by the Central Limit Theorem: with dN=
2 `k log N,

C
1 [ a1 < · · · < ak [ `N dN

p(a1, N) · · · p(ak, N)

4 C
1 [ a1 < · · · < ak [ `N dN

D
m=1,..., k

5F
.

fN(x)+
am

`N

e−u2/2

`2p
du6

4 Nk/2 F
.

fN(x)
F

.

t2

· · · F
.

tk

D
m=1,..., k

5F
.

tm

e−u2/2

`2p
du6 dt1 · · · dtk

=
1
k!

Nk/2 1F
.

fN(x)
F

.

t

e−u2/2

`2p
du dt2

k

=
1
k!
1 `N e−f2

N(x)/2

`2p f2
N(x)

2k

(1+o(1)).
(2.6)
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That the last line converges to e−kx/k! is readily checked. The proof is
completed by demonstrating one has enough control of the relevant errors
in order to make lines two and three rigorous.

The second line of (2.6), replacing each p(a, N) by its Gaussian coun-
terpart, relies on uniform corrections to the Central Limit Theorem cour-
tesy the classical Edgeworth expansion. Letting pM(t) denote the density
of the random variable 1

`M
;M

i=1 (gi − 1) at t, the statement (see ref. 2
Corollary 19.4) is that

sup
− . < t < .

:pM(t) −
e−t2/2

`2p
−

c1t3e−t2/2

`M `2p
:=O(M−1) (2.7)

with an explicitly computable constant c1 independent of M. So, by first
restricting the event in p(a, N) such that the variable is less than 2 `log N
as well as larger than fN(x)+a/`N, employing (2.7), and then putting
back the upper tail by a standard large deviation estimate, we have

p(a, N)=F
.

fN(x)+ a

`N

e−t2/2

`2p
dt+O 1 (log N)3/2

N
2 :=g(a, N)+O 1 (log N)3/2

N
2 .

Substituting this in the first expression in (2.6) it is easy to see that

C
1 [ a1 < · · · < ak [ `N dN

p(a1, N) · · · p(ak, N)

= C
1 [ a1 < · · · < ak [ `N dN

g(a1, N) · · · g(ak, N)+O 1 (log N)2

`N
2 ,

granted that the first expression on the right hand side is indeed of order
one as N ‘ .. That of course is the content of (2.6) once one checks that
the error implicit in line three there is bounded (up to a constant depending
on k) as in:

1N1/2 C
1 [ a [ `N dN

F
a+1

`N

a

`N

F
t

a

`N

e−(fN(x)+u)2/2 du dt2
k

K1Nk/2 F
.

dN

tk − 1e−t2/2 dt2

=O 1 (e−kf2
N(x)/2dk

N) K (e−d
2
N/2Nk/2dk − 2

N )2=O 11 log N
N

2k/22 ,

the second equality valid for x restricted to a compact set. The proof is
finished. L
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Quaternion Ensemble. For Gaussian quaternion components an
expression for PQ

N averages of test functions of the form <k=1,..., N f(zk)
may be found in ref. 13 (p. 302):

F
C

· · · F
C

5 D
k=1,..., N

f(zk)6 PQ
N(dz1,..., dzN)=CN[det[kka(f)]0 [ k, a [ 2N − 1]

1
2.

Here the normalizer is CN=<k=1,..., N (2N)2k/p(2k − 1)! , and the matrix k

is defined by

kka(f)=F
C

e−2N |z|2
(z − z̄) f(z)(zkz̄a − zaz̄k) dR(z) dI(z).

If f(z)=f(|z|) then k reduces to a bi-diagonal: for k − a= + 1 we have
kka= ± 2p >.

0 f(r) e−2Nr2
rk+a+2 dr and kka=0 otherwise. That determinant

is easily seen to be a perfect square and one finds that:

EQ
N
5 D

k=1,..., N
f(|zk |)6= D

k=1,..., N

5 (2N)2k

(2k − 1)!
F

.

0
f(`r) e−2Nrr2k − 1 dr6

= D
k=1,..., N

E 5f1= g1+ · · · +g2k

2N
26 ,

in which the {gk} are once again independent exponential random variables
of mean one. That the proof in the complex case may then be repeated
verbatim save for the adjustment of a few constants is quite plain. L

ACKNOWLEDGMENTS

It is a pleasant duty to thank A. Soshnikov whose comments spurned
my action. This work was supported in part by the NSF Grant DMS-
9983320.

REFERENCES

1. Z. D. Bai, Circular law, Ann. Probab. 25:494–529 (1997).
2. R. N. Bhattacharya and R. Ranga Rao, Normal Approximation and Asymptotic Expan-

sions (Wiley, New York, 1976).
3. A. Borodin and A. Soshnikov, Janossy densities I. Determinantal ensembles, J. Stat.

Phys. 113:595–610 (2003).
4. A. Edelman, The probability that a random real Gaussian matrix has k real eigenvalues,

related distributions, and the circular law, J. Multivariate Anal. 60:203–232 (1997).
5. P. J. Forrester, Fluctuation formula for complex random matrices, J. Phys. A: Math. Gen.

32:159–163 (1999).

Ginibre’s Ensembles 1147



6. P. J. Forrester and G. Honner, Exact statistical properties of the zeroes of complex
Gaussian random polynomials, J. Phys. A: Math. Gen. 32:2961–2981 (1999).

7. P. J. Forrester and T. D. Hughes, Complex Wishart matrices and conductance in meso-
scopic systems: Exact results, J. Math. Phys. 35:6736–6747 (1994) .

8. Y. V. Fyodorov and H.-J. Sommers, Random matrices close to Hermitian or unitary:
Overview of methods and results, J. Phys. A: Math. Gen. 36:3303–3347 (2003).

9. S. Geman, The spectral radius of large random matrices, Ann. Probab. 14:1318–1328
(1986).

10. J. Ginibre, Statistical ensembles of complex, quaternion, and real matrices, J. Math. Phys.
6:440–449 (1965).

11. B. Jancovici, J. L. Lebowitz, and G. Manificat, Large charge fluctuations in classical
Coulomb systems, J. Stat. Phys. 72:773–787 (1993).

12. R. Leadbetter, G. Lingren, and H. Rootzen, Extremes and Related Properties of Random
Sequences and Series (Springer, Berlin, 1983).

13. M. L. Mehta, Random Matrices, 2nd Ed. (Academic Press, Boston, 1991).
14. A. Soshnikov, Universality at the edge of the spectrum in Wigner random matrices,

Comm. Math. Phys. 207:697–733 (1998).
15. B. Rider, A limit law at the edge of a non-Hermitian random matrix ensemble, J. Phys. A:

Math. Gen. 36:3401–3409 (2003).
16. C. Tracy and H. Widom, Level-spacing distributions and the Airy kernel, Comm. Math.

Phys. 159:151–174 (1994).
17. C. Tracy and H. Widom, On orthogonal and symplectic matrix ensembles, Comm. Math.

Phys. 177:727–754 (1996).
18. C. Tracy and H. Widom, Level-spacing distributions and the Bessel kernel, Comm. Math.

Phys. 161:289–309 (1994).
19. W. Wieczorek, Distribution of the largest eigenvalues of the Levi–Smirnov ensemble

(2003), preprint.

1148 Rider


	1. INTRODUCTION
	PROOF OF THE THEOREM
	ACKNOWLEDGMENTS

